9.15.2018

Updating Exadata Software summary

Updating an Exadata software is one of the crucial tasks for any Database Machine Administrator (DMA). Though not necessarily one has to patch the environments whenever there is a new patch released by Oracle, but, it is highly recommended to patch the systems at least twice a year to fix any known &unknown bugs, security vulnerabilities and other issues.

This blog post summarizes the overall overview of software updates on an Exadata Database Machine. The post explains what components are needed the updates, the update order of components, pre-requisites and etc.

Typically, Exadata database machine updates are divided in the following categories:

  • Exadata Infrastructure Software 
  • Grid Infrastructure and Oracle Database Software

Updating the Exadata Software comprises of following components:

  • Storage Servers
  • Database Servers
  • InfiniBand Switches
Software upgrade for Cell and DB nodes typically contains the updates for the following:
  • OLE OS
  • Exadata Software
  • Firmware (Disk, Flash, RAID Controller, HCA, ILOM etc)

Pre-requisites

The following pre-upgrade activities are highly recommended before upgrading the Exadata software in any environment:

  • Review MOS Doc 888828.1 and download the target version software
  • Download observer.patch.zip from MOS Doc 1553103.1
  • Review MOS Doc 1270094.1 for any critical issues
  • Run the latest version of ExaCHK utility. Fix any FAIL and WARNINGS issues reported in the ExaCHK report. Also, review version recommendations in the MAA scoreboard section
  • Ensure you have latest upgrade/patching utilities, such as, patchmgr, opatch etc. (MOS Doc 1070954.1)
  • Perform prerequisites checks
  • Backup the Exadata database servers before the update 
Rolling vs Non-rolling upgrades

Software updates can be performed online or offline (rolling or non-rolling) fashion. For online updates, it is highly recommended ASM high level disk group redundancy to avoid any data or service loss.

As part of best practices, the following is update order is recommended and treated as safe:
  1. GI and Oracle Database home
  2. Database Servers
  3. Storage Servers
  4. IB Switches
patchmgr update utiity

patchmgr update utility is used to patch the Exadata infrastructure components.  Following are the capabilities of patchmgr:
  • Single invocation for Database servers, storage servers and IB Switches
  • updates firmware, OS and Exadata softwares
  • Online update advantage
Conclusion: Though the procedure looks pretty straight forward & simply when reading, with my past experience, patching each environments comes up with surprises and we need to be ready, unless we are very lucky on the particular day to have a smooth patching experience.

In the upcoming posts, I will talk about how to use patchmgr and other update utilizes to update Exadata software, Database, Storage servers and IB Switches.

9.14.2018

Exadata and Capacity on Demand (CoD)

As most of us knew that the Exadata Database Machine comes in different sizes with different resource capacity. Not sure how many of you aware that Capacity on Demand (CoD) option can enable customers to start with limited active cores processors and increase them dynamically on demand. If CoD option is not enabled during the initial EDM configuration, then, all active cores are enabled by default and can't be reduced any further.

With X4-2 or higher, number of active cores can be reduced during the installation and can be increased based on the demand.  For X4-2, cores are increased in two (2) core increment, where as X4-8 increased in eight (8) core factor, see the table below.

Below example demonstrates the procedure to increase the active core processors:

Using DBMCLI utility:

DBMCLI> LIST DBSERVER attributes coreCount

DBMCLI> ALTER DBSERVER pendingCoreCount = new_core_count

DBMCLI> LIST DBSERVER attributes coreCount

Note: Once active cores are enabled (increased), there is no procedure to reduce them again.

Restart the database servers after increasing the core count.

Below table depicts the capacity-on-demand core configuration for various EDM types and releases:














Updates (10-Oct-2018):
Came across of the below blog post where the author described the procedure how to reduce the core count on Exadata.
I haven't tested though, and also not sure whether this is an Oracle approved approach to reduce the core factor on Exadata. However, its good to know the procedure.

https://grepora.com/2018/10/08/reduce-exadata-core-count/

9.13.2018

Cloud Access Security Broker (CASB) for Oracle Cloud Infrastructure (OCI)

Customer adoption to cloud services (IaaS, PaaS, SaaS)  has been rapidly grown and growing. The most challenging aspect moving to cloud is the ability to secure the application and data that is put on the cloud. Oracle's hetrogenous security solution Cloud Access Security Broker (CASB) helps customers protecting their cloud-based infrastructure, platforms, applications across vendors. CASBs have emerged as  the go-to cloud security solution. CASB has the ability to provide security to entire cloud footprint (SaaS, PaaS, IaaS).

Most essentially, for all Oracle Cloud Infrastructure (OCI) deployments, it provides visibility, threat protection, data security and complaince. Following are a few key advantages of CASB:


  • Governance of privileged activities
  • Unified incident management
  • Proactive remediation
  • Continuous security compliance for OCI deployments
As part of complete visibility, it provides holistic view of entire cloud environment, including users and devices.

Threat Detection with User Behavior Analytics (UBA) builds a baseline for typical behavior, down to the user and application. Also, maintain a log when and how a user deviates from the baseline. With the help of predictive analytics, you can easily identify the risky users who performs folder permission change, changing user privileges , or tampering with the configuration settings.

All your cloud compliance configuration settings can be easily maintained. Once the settings are made, CASB monitoring the settings and alerts you whenever there is a change in the setting.
CASB provides three key components to secure your data in cloud:
  1. Data visibility
  2. Data inspection
  3. Data Accessibility
It can easily integrate with the existing cloud security solutions, such as, SWG, NGF, IDaaS, DLP and SIEM.

For more details and information, visit Oracle website:

https://www.oracle.com/cloud/paas/casb-cloud-service.html


9.12.2018

All about 'Autonomous Transaction Processing' - Part I

There has been a lot of buzz about 'Self driving & Self tuning database', 'autonomous', 'automation', etc. since Oracle 18c announced. I have decided to do my homework and test/validate some of them. So, this blog post will focus about 'Autonomous Transaction Processing (ATP)', how this is helpful to an organization and what role a DBA can play.

Its nothing but another typical cloud offering from Oracle. To begin with, Oracle ATP is built upon Oracle database and is designed, optimized to deliver scalable transaction performance across all standard business applications. As a service, ATP doesn't require DBA and no DBA intervention for any installation,configuration or management related activities. It handles all the DB related activities, such as, DB creation, backup, patching, upgrade, space management etc.

Its completely elastic service, where you can dynamically increase and decrease the resources (OCPU and storage capacity) without having any service interruption or database downtime. Using the cloud based console, you can easily manage the service, such as, scaling the service and monitoring. Additionally, cloud based notebook application provides easy querying, colobration and  data-visualization capabilities.

Below picture (source : Oracle documentation) describes the ATP architecture:

Below are some of the key features of Oracle Autonomous Transaction Processing:

  • Simplified management of : rapid provisioning of new database, dynamic resource management (allocation and de-allocation of cpu and storage), patching & upgrades and backup & recovery
  • complete elastic service
  • Supports: existing, cloud and on-prime applications
  • supports high query performance and concurrent workloads
  • Easy data migration
  • BI tools support
  • Building reports and dashboards with analytics
  • All data stores in encrypted formatted to secure the data
  • Strong authenticity for connection and data access control
In part II, I will discuss details subscription, creating and users management.
Trying to avail 30 days free account on Oracle could. If I succeed to have the credentials, I will run through practically and post the configuration and management tasks.